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We will prove comparison theorems for the least positive eigenvalues of
(1), (3) and (2), (3) below. Consider

(_l)n-k Ly(t) = AP(t) y(t + k), (1)

(-l)n-kLy(t)=AQ(t)y(t+k) (2)

with boundary conditions

,1'y(a) = 0,

,1iy (b + k + 1) = 0,

O:::;;i:::;;k-l,

O:::;;i:::;;n-k-l,
(3)

where a and b (> a) are integers and t is a discrete variable. Here P( t)
and Q(t) are m x m matrix functions defined for t E [a, b]. Further,
k E { 1, .." n - 1}, A, A are scalar parameters, ,1 is the difference operator
defined by ,1y(t) = y(t + 1) - y(t), and a solution y(t) of (1) (or (2)) is an
m-dimensional vector function defined on [a,b+n]. Ly(t)=O is the nth
order difference equation defined by

n

Ly(t)= L O(i(t)y(t+i)=O,
i~O

(4)

where the coefficients are scalar functions defined on [a, b] with O(n(t) == 1
and
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( - I t O(o( t) > 0
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(5)
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for tE[a,b]. In [2, Chap. XIV], Fort considers (1), (3) with n=2 and
k= 1.

Let x be a scalar and let Lx =° denote the scalar equation
corresponding to (4) defined by

n

Lx(t) = L ai(t) x(t + i) = 0.
i~O

We say that a solution x(t) of Lx =°has a generalized zero at to in case
either x(to) =°or there exists an integer j with 1~ j ~ to - a such that
( -1)j x(to - j) x(to) > °and if j > 1, x(t) = 0, to - j < t < to' Hypothesis (5)
guarantees (see [11]) that a nontrivial solution of Lx =°cannot have
n - 1 zeros at t, ..., t + n - 2 and a generalized zero at t + n - 1.

We say Lx =° is right (j, n - j)-disconjugate on [a, b + n] provided
there is no nontrivial solution x( t) and integers a, fJ, with a ~ a < a + j ~
fJ ~ b + j + 1, such that

x(a + i) = 0, °~ i ~ j - 1

x(fJ + i) = 0, 0~i~n-j-2

and x has a generalized zero at fJ + n - j - 1. We say Lx =° is left
(j, n - j)-disconjugate on [a, b + n] provided there is no nontrivial solution
x(t) and integers a, fJ, with a~a<a+j~fJ~b+ j+ 1, such that

x(a + i) = 0,

x(fJ + i) = 0,

0~i~j-2

O~i~n-j-l

and x has a generalized zero at a + j - 1. If Lx =° is left and right
(j, n - j)-disconjugate on [a, b + n], then we say that Lx =°is (j, n - j)
disconjugate on [a, b + n]. Lx =°is disconjugate (see [6]) on [a, b + n]
provided no nontrivial solution has n generalized zeros on [a, b + n]. It is
known that if Lx =° is right (j, n - j)-disconjugate on [a, b + n],
1~j~n-l, then Lx=O is disconjugate on [a, b+n].

If x1(t), ..., xit) are solutions of Lx=O, then we define the Wronskian of
x1(t), ..., xj(t) by

Aj-1X1(t)

Xl (t)

x t(t+l)

Aj-1xi t )

xi t )

xj(t+ 1)
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Let u)t, s), °~ j ~ n - 1, be solutions of Lx =°satisfying the partial set
of initial conditions

°~ i~j,

where 15 ij is the Kronecker delta. It was shown in [13] that Lx = °is right
(j, n - j)-disconjugate on [a, b + n] if and only if

W[uJt, s), ... , un_1(t, s)] > 0,

This is the first hint of a positivity result.
We make the following assumption throughout this paper concerning the

equation Lx = 0:

Either Lx =°is disconjugate on [a, b +n], or 2 ~ k ~ n - 1 and
Lx =°is (j, n - j)-disconjugate on [a + k - j, b + n + k - jJ for (H)
k-1~j~n-1.

Our results appear to be new even when Lx =° is disconjugate on
[a, b + n].

We now state the positivity result that we will use later. For ease of
reference we call it Theorem 1. For a proof of this result, see [6] when
Lx =°is disconjugate on [a, b + n], and see [12] if the second condition
in (H) holds.

THEOREM 1. If (H) holds, then the Green's function G(t, s) for the
(k, n - k)-boundary value problem

(_l)n-k Lx(t) = h(t)

Llix(a)=O, 0~i~k-1

Llix(b+k+ 1)=0, 0~i~n-k-1

satisfies

G(t, s) > 0, t E [a + k, b + k], sE [a, b].

The other main tool that we will use is cone theory in a Banach space as
developed by Krasnosel'skii. For applications of this cone theory see
[3-5,7,8,10,14-17]. We now introduce the relevant cone theory that we
use in this paper.

Let PJ be a Banach space. A closed nonempty subset f!lJ of 8B is called a
cone provided that whenever u, v E f!l' it follows that au + f3v E f!lJ for all
a?: 0, f3?: 0, and whenever u, - u E f!l', then u = 0. We say that a cone f!l' is
reproducing provided 8B=f!l'-f!l'=. {u-v: u, vEf!l'}. We write U~V
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provided v - u E f!J>. If M and N are operators on flJ, then we write M ~ N
(with respect to &P) provided Mu ~ Nu for all u E &P. A bounded linear
operator M is uo-positive provided Uo E &P and for each nonzero u E &P, there
are positive numbers k 1, k z (which in general depend on u) such that
k l Uo ~ Mu ~ kzuo·

We will use the following results from cone theory which we state here
for easy reference. The first two appear in [9], and the third result appears
in [17].

THEOREM 2. Assume f!J> is a reproducing cone and M is a lineqr compact
operator which leaves the cone &P invariant. Assume there is a nontrivial
UoE flJ and an Bo> 0 such that Muo~ BoUo. Then M has at least one eigen
vector Zo E f!J> with corresponding eigenvalue ,1.0 ~ Bo such that ,1.0 is an upper
bound for the moduli of the eigenvalues of M.

THEOREM 3. Assume &P is a reproducing cone and M is a compact
uo-positive linear operator. Then M has an essentially unique eigenvector in
f!J> and the corresponding eigenvalue is simple, positive, and larger than the
modulus of any other eigenvalue of M.

THEOREM 4. Assume M and N are linear operators and that at least one
of them is uo-positive. If M ~ N and there exist nontrivial UI' Uz E &P,
AI, Az > 0 such that MUI ~ AI UI and Nu z~ Azuz , then Al ~ Az and if Al = Az
then UI is a scalar multiple of Uz.

The Banach space that we are interested in here is

flJ= {y: [a, b+n] ---+Rm I L1 iy(a) =0, O~i~k-l,

L1 iy(b + k + 1) = 0, 0 ~ i ~ n - k - 1},

where the norm on flJ is defined by II yll = max {I y(t)1 : t E [a + k, b+k]}
and 1·1 is the Euclidean norm. Let .f be a reproducing cone in Rm and
define the cone f!J> by

f!J>= {yEB6: y(t)EJf; tE [a+k, b+k]}.

It is easy to show that &P is a reproducing cone.
Define operators M and N on flJ by

b

Mu(t) = L G(t,s)P(s)u(s+k)
s=a

b

Nu(t) = L G(t,s)Q(s)u(s+k)
s=a
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for t E [a, b + n]. It can be shown that M and N are compact linear
operators.

Note that if UEPJ and h(t)=Mu(t), then h(t) is a solution of

(-lr- k Lh(t)=P(t)u(t+k)

,dih(a) =0, O~i~k-l

,dih(b+k+ 1)=0, O~i~n-k-1.

If ..1.0 # 0 is an eigenvalue of M and zo(t) is a corresponding eigenvector,
then Mzo(t) = Aozo(t) and

Ao( _l)n - k Lzo(t) = P( t) zo(t + k)

or

and Zo satisfies the boundary conditions (3). This is summarized in the
following remark.

Remark 1. ..1. 0 # 0 is an eigenvalue of M with corresponding eigen
function zo(t) iff 1/..1.0 is an eigenvalue of (1), (3), with corresponding
eigenfunction zo(t). Similar statements hold for the operator N and the
eigenvalue problem (2), (3).

THEOREM 5. In addition to (H), assume Q(t) f 5; f for a ~ t ~ b, and
for each nontrivial u E9 there is a tuE [a, b] such that Q(tu) u(tu+ k) EfO
(interior of f). Then the boundary value problem (2), (3) has a smallest
positive eigenvalue A o and A o is smaller than the modulus of any other eigen
value of (2), (3). Furthermore, there is an essentially unique eigenfunction
zo(t) corresponding to A o and either zoE9° or -zoE9°.

Proof We will show that N: 9\ {O} --+ 9°. To this end, let 0 # u E 9
and set

b

h(t) = Nu(t) = L G(t, s) Q(s) u(s + k).
s=a

It follows that h satisfies the boundary conditions (3). Further, it is easy to
see that h(t)Ef for all tE[a+k,b+k]. By hypothesis, there is a
tuE[a,b] such that Q(tJU(tu+k)Efo. By Theorem 1, G(t,s»O for
a +k ~ t ~ b+ k. Hence
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It follows that h(t) E fa, a + k ~ t ~ b + k, and from this it follows that
hE f!lJ 0

. Using standard arguments (for example, see [8, p. 253]), we now
show that N is uo·positive.

Since N: &\ {O} --+ &0, &0"# 0. Let UoE&0 and let 0"# u Ef!IJ. Since
uoEf!lJ° and NUE&o, we can pick numbers k 2 sufficiently large and k j >0
sufficiently small so that Uo- (ljk2 ) Nu E& and Nu - k j UoEf!IJ. It follows
that

with respect to & and so N is uo-positive. The conclusion of the theorem
follows from Theorem 3 and Remark 1.

We now apply this result to the case where the cone f is a "quadrant"
in Rm

• Assume J; E { - 1, I}, 1~ i ~ m, and define the "quadrant"

Jf; = {x E R m
: J;x;? 0, 0 ~ i ~ m}.

Then define the cone f!IJ 1 in fJ4 by

&1= {UEfJ4:U(t)EJf;,a+k~t~b+k}.

COROLLARY 1. If (H) holds, and JjJjquft) > 0, t E [a, b], 1 ~ i, j ~ m,
then the boundary value problem (2), (3) has a smallest positive eigenvalue
Ao which is smaller than the modulus of any other eigenvalue of (2), (3).
Furthermore, there is an essentially unique eigenfunction zo(t) corresponding
to Ao and either Zo Ef!IJ? or - Zo E&?

Proof Let f = Jf; and & =~ in Theorem 5. It suffices to show that
Q(t) Jf; <;; Jf;, a ~ t ~ b, and that for each 0"# u E~ there is a tuE [a, b]
such that Q(tJ U(tu+k)Ef?

Let xEJf;. Then Jjx;?O, 1~i~m. Then the ith component (Q(t)x)j
satisfies

m

J;(Q(t)x);=J; L qit)xj
j=1

m

= L J;J;qij(t) JjXj?O
j=l

for 1~ i ~ m, a ~ t ~ b. It follows that Q(t) Jf; <;; Jf; for a ~ t ~ b. Now
assume 0"# u E~. It follows that there is a jo E {I, ... , m} and a tu E [a, b]
such that JjOUjo(tu + k) > O. But then

m

J;(Q(tJu(tu+ k ));= I J;Jjqij(tJJjuitu+k)
j=1

? J;Jjoqijo(tJ JjoUjo(tu + k)

>0



82 HANKERSON AND PETERSON

for 1~ i ~ m. Hence Q( tJ u(tu + k) E %? and the result follows from
Theorem 5.

THEOREM 6. In addition to (H), assume P(t) and Q(t) satisfy the
assumptions concerning Q(t) in Theorem 5. If P(t) ~ Q(t) with respect to %,
t E [a, b], then the smallest positive eigenvalues Ao and Ao of (1), (3) and (2),
(3), respectively, satisfy Ao~ Ao. Furthermore, if Ao= Ao then

P(t) zo(t + k) = Q(t) zo(t + k), t E [a, b],

where zo(t) is as in Theorem 5.

Proof By Theorem 5, Ao>°and Ao>°exist. We now show that
M ~ N with respect to (!Ii. Let u E f!j> and note that

b

Mu(t) = L G(t, s) P(s) u(s + k)
s=a

b

~ L G(t,s)Q(s)u(s+k)
s=a

= Nu(t), t E [a, b +nl

Further LJiMu(a) = LJiNu(a) =0, 0~i~k-1, and LJiMu(b+k+ 1)=
LJWu(b+k+ 1)=0, O~i~n-k-1.Theorem 4 shows that Ao~Ao.

Now suppose Ao= Ao. By Theorem 4, the eigenfunctions u(t), v(t) of (1),
(3) and (2), (3), respectively, are scalar multiples of each other, say
v( t) = cu( t). It follows that

( - 1t - k Lv( t) = AoP( t) v( t + k) = )'0 Q( t) v( t + k),

Hence

t E [a, b l

P(t) zo(t + k) = Q(t) zo(t + k),

where zo(t)=v(t).

t E [a, b],

THEOREM 7. Assume c5ic5jpy(t)~O on [a,b] for l~i,j~m, and that
there is a to E [a, b] and an io E {1, ..., m} such that Pioio(tO) > 0. Then the
eigenvalue problem (1), (3) has a least positive eigenvalue Ao which is a lower
bound on the modulus of the eigenvalues of (1), (3) and satisfies

Furthermore, there is an eigenfunction yo(t) corresponding to Ao satisfying
c5 i(yo(t)); ~ 0, t E [a, b + n],for 1~ i ~ m.
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Proof First we show that M: ~ -+ ~, where

b

Mu(t)= L G(t,S) P(s) u(s+k).
s=a

Let u E ~ and consider

b m

b;(MuL(t) = L G(t, s) L b;bjPij(S) bjUiS + k)
s=a j= 1

~ 0, 1~ i ~ m, t E [a, b + n1

83

Further, Mu(t) satisfies the boundary conditions (3). Hence, M: ~ -+ ~.

Define WE [l} 1 by setting wi(t) =°on [a, b + nJ for i # io, and set

t # to + k

t = to + k,

where io and to are as in the statement of the theorem. Note that

Then for i # io we have

t E [a, b +nl

Further, for t # to + k,

We also have that

b m

b;o(Mw);o(to+k)= L G(to+k,s) L b;Ap;oj(S)bjw;(s+k)
s=a j=l

= G(to + k, to) P;o;o(to) b;o W;o(tO + k)

= eob;oW;o(tO + k).

It follows that Mw ~ eo w with respect to ~. The conclusions of this
theorem now follow easily from Theorem 2.

By finding the appropriate Green's function, it is easy to get the
following result.

640/59/1-6
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COROLLARY 2. If P(t) satisfies the hypothesis of Theorem 7, then the
eigenvalue problem

-L/2y(t)=AP(t) y(t+ 1)

y(a) = 0

y(b + 2)=0

has a smallest positive eigenvalue ..1. 0 which satisfies

A-I (to+l-a)(b+l-to) ()
0;:: b+2-a Pioio to·

In Theorem 7, we obtained an upper bound for ..1. 0 , Using a proof similar
to a proof of Ahmad and Lazer [1, Lemma 1] in the differential equations
case, we can also get a lower bound for ..1.0 ,

COROLLARY 3. Assume P(t) satisfies the hypothesis of Theorem 7. Then
the least positive eigenvalue ..1. 0 of (1), (3) satisfies

b

G(to+k, to) Pioio(tO)~Aol ~B L IIP(s)ll,
s=a

where B= max{ G(t, s) I tE [a +k, b +k], SE [a, b]} and IIP(s)11 =
maxI ";;;";'m L'j'~ I (j/JjPy(s).

Proof Let ..1. 0 be the smallest positive eigenvalue and let zo(t) be a
corresponding eigenvector in ~. Pick to E [a, b] and jo E {I, ... , m} such
that

A == (jjo(zo(to + k))jo = max{ (j;(zo(t + k))j I 1~j ~ m, t E [a, b]}.

Then Mzo(t) = (1/..1.0 ) zo(t), or equivalently,

1 b m

T (jjo(zo(to + k ))jo = L G(to + k, s) L (jjo(jj Pjo;(s) (j;(zo(s + k)) j'
o s=a j=1

This implies that

It follows that
b

..1.0 1 ~ B L IIP(s)ll·
s=a
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THEOREM 8. In addition to (H), assume

1. there is an ioE {I, ..., m} and a to E [a, b] such that p ioio(tO) > 0, and

2. 0 ~ Pij(t) b/>j ~ qij(t) bibj and qij(t) oF 0 on [a, b] for 1~ i, j ~ m.

Then the eigenvalue problems (1), (3) and (2), (3) have smallest positive
eigenvalues Ao and A o, respectively. Furthermore, Ao~ Ao and Ao= Ao iff
P(t)=Q(t) on [a,b].

Proof By Corollary 1 and Theorem 7, it follows that Ao and Ao exist.
The proof of Theorem 6 still applies in the present context, since only one
of the operators M, N is required to be uo-positive in that proof. Hence,
Ao~Ao·

Assume now that Ao= Ao. By Corollary 1, there is an eigenfunction
zo(t) E &>?, and the arguments in Theorem 6 show that

P(t) zo(t + k) = Q(t) zo(t +k),

It follows that for t E [a, b],

t E [a, b].

m

L biblqit )- Pi/I)] b/zo(t+k))j=O'
j~l

Since every term in this sum is nonnegative and bj (zo(t))j>O for
tE [a+k, b+k], 1~j~m, we see that

tE[a,b], l~i,j~m.
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