A Positivity Result Applied to Difference Equations

Darrel Hankerson

Department of Algebra, Combinatorics and Analysis, Auburn University, Auburn, Alabama 36849-5307, U.S.A.

AND

Allan Peterson

Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588-0323., U.S.A. Communicated by Oved Shisha

Received May 10, 1988

We will prove comparison theorems for the least positive eigenvalues of (1), (3) and (2), (3) below. Consider

$$
\begin{align*}
& (-1)^{n-k} L y(t)=\lambda P(t) y(t+k), \tag{1}\\
& (-1)^{n-k} L y(t)=\Lambda Q(t) y(t+k) \tag{2}
\end{align*}
$$

with boundary conditions

$$
\begin{align*}
\Delta^{i} y(a)=0, & & 0 \leqslant i \leqslant k-1, \tag{3}\\
\Delta^{i} y(b+k+1)=0, & & 0 \leqslant i \leqslant n-k-1,
\end{align*}
$$

where a and $b(>a)$ are integers and t is a discrete variable. Here $P(t)$ and $Q(t)$ are $m \times m$ matrix functions defined for $t \in[a, b]$. Further, $k \in\{1, \ldots, n-1\}, \lambda, A$ are scalar parameters, Δ is the difference operator defined by $\Delta y(t)=y(t+1)-y(t)$, and a solution $y(t)$ of (1) (or (2)) is an m-dimensional vector function defined on $[a, b+n] . L y(t)=0$ is the nth order difference equation defined by

$$
\begin{equation*}
L y(t)=\sum_{i=0}^{n} \alpha_{i}(t) y(t+i)=0 \tag{4}
\end{equation*}
$$

where the coefficients are scalar functions defined on $[a, b]$ with $\alpha_{n}(t) \equiv 1$ and

$$
\begin{equation*}
(-1)^{n} \alpha_{0}(t)>0 \tag{5}
\end{equation*}
$$

for $t \in[a, b]$. In [2, Chap. XIV], Fort considers (1), (3) with $n=2$ and $k=1$.

Let x be a scalar and let $L x=0$ denote the scalar equation corresponding to (4) defined by

$$
L x(t)=\sum_{i=0}^{n} \alpha_{i}(t) x(t+i)=0
$$

We say that a solution $x(t)$ of $L x=0$ has a generalized zero at t_{0} in case either $x\left(t_{0}\right)=0$ or there exists an integer j with $1 \leqslant j \leqslant t_{0}-a$ such that $(-1)^{j} x\left(t_{0}-j\right) x\left(t_{0}\right)>0$ and if $j>1, x(t)=0, t_{0}-j<t<t_{0}$. Hypothesis (5) guarantees (see [11]) that a nontrivial solution of $L x=0$ cannot have $n-1$ zeros at $t, \ldots, t+n-2$ and a generalized zero at $t+n-1$.

We say $L x=0$ is right ($j, n-j$)-disconjugate on $[a, b+n]$ provided there is no nontrivial solution $x(t)$ and integers α, β, with $a \leqslant \alpha<\alpha+j \leqslant$ $\beta \leqslant b+j+1$, such that

$$
\begin{array}{ll}
x(\alpha+i)=0, & 0 \leqslant i \leqslant j-1 \\
x(\beta+i)=0, & 0 \leqslant i \leqslant n-j-2
\end{array}
$$

and x has a generalized zero at $\beta+n-j-1$. We say $L x=0$ is left $(j, n-j)$-disconjugate on $[a, b+n]$ provided there is no nontrivial solution $x(t)$ and integers α, β, with $a \leqslant \alpha<\alpha+j \leqslant \beta \leqslant b+j+1$, such that

$$
\begin{array}{ll}
x(\alpha+i)=0, & 0 \leqslant i \leqslant j-2 \\
x(\beta+i)=0, & 0 \leqslant i \leqslant n-j-1
\end{array}
$$

and x has a generalized zero at $\alpha+j-1$. If $L x=0$ is left and right $(j, n-j)$-disconjugate on $[a, b+n]$, then we say that $L x=0$ is $(j, n-j)$ disconjugate on $[a, b+n] . L x=0$ is disconjugate (see [6]) on $[a, b+n]$ provided no nontrivial solution has n generalized zeros on $[a, b+n]$. It is known that if $L x=0$ is right $(j, n-j)$-disconjugate on $[a, b+n]$, $1 \leqslant j \leqslant n-1$, then $L x=0$ is disconjugate on $[a, b+n]$.

If $x_{1}(t), \ldots, x_{j}(t)$ are solutions of $L x=0$, then we define the Wronskian of $x_{1}(t), \ldots, x_{j}(t)$ by

$$
\begin{aligned}
W\left[x_{1}(t), \ldots, x_{j}(t)\right] & =\left|\begin{array}{ccc}
x_{1}(t) & \cdots & x_{j}(t) \\
\Delta x_{1}(t) & \cdots & \Delta x_{j}(t) \\
\vdots & \ddots & \vdots \\
\Delta^{j-1} x_{1}(t) & \cdots & \Delta^{j-1} x_{j}(t)
\end{array}\right| \\
& =\left|\begin{array}{ccc}
x_{1}(t) & \cdots & x_{j}(t) \\
x_{1}(t+1) & \cdots & x_{j}(t+1) \\
\vdots & \ddots & \vdots \\
x_{1}(t+j-1) & \cdots & x_{j}(t+j-1)
\end{array}\right|
\end{aligned}
$$

Let $u_{j}(t, s), 0 \leqslant j \leqslant n-1$, be solutions of $L x=0$ satisfying the partial set of initial conditions

$$
\Delta^{i} u_{j}(s, s)=\delta_{i j}, \quad 0 \leqslant i \leqslant j,
$$

where $\delta_{i j}$ is the Kronecker delta. It was shown in [13] that $L x=0$ is right $(j, n-j)$-disconjugate on $[a, b+n]$ if and only if

$$
W\left[u_{j}(t, s), \ldots, u_{n-1}(t, s)\right]>0, \quad a \leqslant s \leqslant t-j \leqslant b+1
$$

This is the first hint of a positivity result.
We make the following assumption throughout this paper concerning the equation $L x=0$:

$$
\begin{align*}
& \text { Either } L x=0 \text { is disconjugate on }[a, b+n] \text {, or } 2 \leqslant k \leqslant n-1 \text { and } \\
& L x=0 \text { is }(j, n-j) \text {-disconjugate on }[a+k-j, b+n+k-j] \text { for } \tag{H}\\
& k-1 \leqslant j \leqslant n-1 \text {. }
\end{align*}
$$

Our results appear to be new even when $L x=0$ is disconjugate on $[a, b+n]$.

We now state the positivity result that we will use later. For ease of reference we call it Theorem 1. For a proof of this result, see [6] when $L x=0$ is disconjugate on $[a, b+n]$, and see [12] if the second condition in (H) holds.

Theorem 1. If (H) holds, then the Green's function $G(t, s)$ for the ($k, n-k$)-boundary value problem

$$
\begin{aligned}
(-1)^{n-k} L x(t) & =h(t) & & \\
\Delta^{i} x(a) & =0, & & 0 \leqslant i \leqslant k-1 \\
\Delta^{i} x(b+k+1) & =0, & & 0 \leqslant i \leqslant n-k-1
\end{aligned}
$$

satisfies

$$
G(t, s)>0, \quad t \in[a+k, b+k], s \in[a, b] .
$$

The other main tool that we will use is cone theory in a Banach space as developed by Krasnosel'skiĭ. For applications of this cone theory see [3-5, 7, 8, 10, 14-17]. We now introduce the relevant cone theory that we use in this paper.

Let \mathscr{B} be a Banach space. A closed nonempty subset \mathscr{P} of \mathscr{B} is called a cone provided that whenever $u, v \in \mathscr{P}$ it follows that $\alpha u+\beta v \in \mathscr{P}$ for all $\alpha \geqslant 0, \beta \geqslant 0$, and whenever $u,-u \in \mathscr{P}$, then $u=0$. We say that a cone \mathscr{P} is reproducing provided $\mathscr{B}=\mathscr{P}-\mathscr{P} \equiv\{u-v: u, v \in \mathscr{P}\}$. We write $u \leqslant v$
provided $v-u \in \mathscr{P}$. If M and N are operators on \mathscr{B}, then we write $M \leqslant N$ (with respect to \mathscr{P}) provided $M u \leqslant N u$ for all $u \in \mathscr{P}$. A bounded linear operator M is u_{0}-positive provided $u_{0} \in \mathscr{P}$ and for each nonzero $u \in \mathscr{P}$, there are positive numbers k_{1}, k_{2} (which in general depend on u) such that $k_{1} u_{0} \leqslant M u \leqslant k_{2} u_{0}$.

We will use the following results from cone theory which we state here for easy reference. The first two appear in [9], and the third result appears in [17].

Theorem 2. Assume \mathscr{P} is a reproducing cone and M is a linear compact operator which leaves the cone \mathscr{P} invariant. Assume there is a nontrivial $u_{0} \in \mathscr{B}$ and an $\varepsilon_{0}>0$ such that $M u_{0} \geqslant \varepsilon_{0} u_{0}$. Then M has at least one eigenvector $z_{0} \in \mathscr{P}$ with corresponding eigenvalue $\lambda_{0} \geqslant \varepsilon_{0}$ such that λ_{0} is an upper bound for the moduli of the eigenvalues of M.

Theorem 3. Assume \mathscr{P} is a reproducing cone and M is a compact u_{0}-positive linear operator. Then M has an essentially unique eigenvector in \mathscr{P} and the corresponding eigenvalue is simple, positive, and larger than the modulus of any other eigenvalue of M.

Theorem 4. Assume M and N are linear operators and that at least one of them is u_{0}-positive. If $M \leqslant N$ and there exist nontrivial $u_{1}, u_{2} \in \mathscr{P}$, $\lambda_{1}, \lambda_{2}>0$ such that $M u_{1} \geqslant \lambda_{1} u_{1}$ and $N u_{2} \leqslant \lambda_{2} u_{2}$, then $\lambda_{1} \leqslant \lambda_{2}$ and if $\lambda_{1}=\lambda_{2}$ then u_{1} is a scalar multiple of u_{2}.

The Banach space that we are interested in here is

$$
\begin{aligned}
\mathscr{B}=\left\{y:[a, b+n] \rightarrow R^{m} \mid \Delta^{i} y(a)\right. & =0,0 \leqslant i \leqslant k-1, \\
\Delta^{i} y(b+k+1) & =0,0 \leqslant i \leqslant n-k-1\},
\end{aligned}
$$

where the norm on \mathscr{B} is defined by $\|y\|=\max \{|y(t)|: t \in[a+k, b+k]\}$ and $|\cdot|$ is the Euclidean norm. Let \mathscr{K} be a reproducing cone in R^{m} and define the cone \mathscr{P} by

$$
\mathscr{P}=\{y \in \mathscr{B}: y(t) \in \mathscr{K}, t \in[a+k, b+k]\} .
$$

It is easy to show that \mathscr{P} is a reproducing cone.
Define operators M and N on \mathscr{B} by

$$
\begin{aligned}
& M u(t)=\sum_{s=a}^{b} G(t, s) P(s) u(s+k) \\
& N u(t)=\sum_{s=a}^{b} G(t, s) Q(s) u(s+k)
\end{aligned}
$$

for $t \in[a, b+n]$. It can be shown that M and N are compact linear operators.

Note that if $u \in \mathscr{B}$ and $h(t)=M u(t)$, then $h(t)$ is a solution of

$$
\begin{aligned}
(-1)^{n-k} L h(t) & =P(t) u(t+k) \\
\Delta^{i} h(a) & =0, \quad 0 \leqslant i \leqslant k-1 \\
\Delta^{i} h(b+k+1) & =0, \quad 0 \leqslant i \leqslant n-k-1 .
\end{aligned}
$$

If $\lambda_{0} \neq 0$ is an eigenvalue of M and $z_{0}(t)$ is a corresponding eigenvector, then $M z_{0}(t)=\lambda_{0} z_{0}(t)$ and

$$
\lambda_{0}(-1)^{n-k} L z_{0}(t)=P(t) z_{0}(t+k)
$$

or

$$
(-1)^{n-k} L z_{0}(t)=\frac{1}{\lambda_{0}} P(t) z_{0}(t+k)
$$

and z_{0} satisfies the boundary conditions (3). This is summarized in the following remark.

Remark 1. $\lambda_{0} \neq 0$ is an eigenvalue of M with corresponding eigenfunction $z_{0}(t)$ iff $1 / \lambda_{0}$ is an eigenvalue of (1), (3), with corresponding eigenfunction $z_{0}(t)$. Similar statements hold for the operator N and the eigenvalue problem (2), (3).

Theorem 5. In addition to (H), assume $Q(t) \mathscr{K} \subseteq \mathscr{K}$ for $a \leqslant t \leqslant b$, and for each nontrivial $u \in \mathscr{P}$ there is a $t_{u} \in[a, b]$ such that $Q\left(t_{u}\right) u\left(t_{u}+k\right) \in \mathscr{K}^{0}$ (interior of \mathscr{K}). Then the boundary value problem (2), (3) has a smallest positive eigenvalue Λ_{0} and Λ_{0} is smaller than the modulus of any other eigenvalue of (2), (3). Furthermore, there is an essentially unique eigenfunction $z_{0}(t)$ corresponding to Λ_{0} and either $z_{0} \in \mathscr{P}^{0}$ or $-z_{0} \in \mathscr{P}^{0}$.

Proof. We will show that $N: \mathscr{P} \backslash\{0\} \rightarrow \mathscr{P}^{0}$. To this end, let $0 \neq u \in \mathscr{P}$ and set

$$
h(t)=N u(t)=\sum_{s=a}^{b} G(t, s) Q(s) u(s+k)
$$

It follows that h satisfies the boundary conditions (3). Further, it is easy to see that $h(t) \in \mathscr{K}$ for all $t \in[a+k, b+k]$. By hypothesis, there is a $t_{u} \in[a, b]$ such that $Q\left(t_{u}\right) u\left(t_{u}+k\right) \in \mathscr{K}^{0}$. By Theorem 1, $G(t, s)>0$ for $a+k \leqslant t \leqslant b+k$. Hence

$$
G\left(t, t_{u}\right) Q\left(t_{u}\right) u\left(t_{u}+k\right) \in \mathscr{K}^{0} .
$$

It follows that $h(t) \in \mathscr{K}^{0}, a+k \leqslant t \leqslant b+k$, and from this it follows that $h \in \mathscr{P}^{0}$. Using standard arguments (for example, see [8, p. 253]), we now show that N is u_{0}-positive.

Since $N: \mathscr{P} \backslash\{0\} \rightarrow \mathscr{P}^{0}, \mathscr{P}^{0} \neq \varnothing$. Let $u_{0} \in \mathscr{P}^{0}$ and let $0 \neq u \in \mathscr{P}$. Since $u_{0} \in \mathscr{P}^{0}$ and $N u \in \mathscr{P}^{0}$, we can pick numbers k_{2} sufficiently large and $k_{1}>0$ sufficiently small so that $u_{0}-\left(1 / k_{2}\right) N u \in \mathscr{P}$ and $N u-k_{1} u_{0} \in \mathscr{P}$. It follows that

$$
k_{1} u_{0} \leqslant N u \leqslant k_{2} u_{0}
$$

with respect to \mathscr{P} and so N is u_{0}-positive. The conclusion of the theorem follows from Theorem 3 and Remark 1.

We now apply this result to the case where the cone \mathscr{K} is a "quadrant" in R^{m}. Assume $\delta_{i} \in\{-1,1\}, 1 \leqslant i \leqslant m$, and define the "quadrant"

$$
\mathscr{K}_{1}=\left\{x \in R^{m}: \delta_{i} x_{i} \geqslant 0,0 \leqslant i \leqslant m\right\} .
$$

Then define the cone \mathscr{P}_{1} in \mathscr{B} by

$$
\mathscr{P}_{1}=\left\{u \in \mathscr{B}: u(t) \in \mathscr{K}_{1}, a+k \leqslant t \leqslant b+k\right\} .
$$

Corollary 1. If (H) holds, and $\delta_{i} \delta_{j} q_{i j}(t)>0, t \in[a, b], 1 \leqslant i, j \leqslant m$, then the boundary value problem (2), (3) has a smallest positive eigenvalue Λ_{0} which is smaller than the modulus of any other eigenvalue of (2), (3). Furthermore, there is an essentially unique eigenfunction $z_{0}(t)$ corresponding to Λ_{0} and either $z_{0} \in \mathscr{P}_{1}^{0}$ or $-z_{0} \in \mathscr{P}_{1}^{0}$.

Proof. Let $\mathscr{K}=\mathscr{K}_{1}$ and $\mathscr{P}=\mathscr{P}_{1}$ in Theorem 5. It suffices to show that $Q(t) \mathscr{K}_{1} \subseteq \mathscr{K}_{1}, a \leqslant t \leqslant b$, and that for each $0 \neq u \in \mathscr{P}_{1}$ there is a $t_{u} \in[a, b]$ such that $Q\left(t_{u}\right) u\left(t_{u}+k\right) \in \mathscr{K}_{1}^{0}$.

Let $x \in \mathscr{K}_{1}$. Then $\delta_{i} x_{i} \geqslant 0,1 \leqslant i \leqslant m$. Then the i th component $(Q(t) x)_{i}$ satisfies

$$
\begin{aligned}
\delta_{i}(Q(t) x)_{i} & =\delta_{i} \sum_{j=1}^{m} q_{i j}(t) x_{j} \\
& =\sum_{j=1}^{m} \delta_{i} \delta_{j} q_{i j}(t) \delta_{j} x_{j} \geqslant 0
\end{aligned}
$$

for $1 \leqslant i \leqslant m, a \leqslant t \leqslant b$. It follows that $Q(t) \mathscr{K}_{1} \subseteq \mathscr{K}_{1}$ for $a \leqslant t \leqslant b$. Now assume $0 \neq u \in \mathscr{P}_{1}$. It follows that there is a $j_{0} \in\{1, \ldots, m\}$ and a $t_{u} \in[a, b]$ such that $\delta_{j_{0}} u_{j_{0}}\left(t_{u}+k\right)>0$. But then

$$
\begin{aligned}
\delta_{i}\left(Q\left(t_{u}\right) u\left(t_{u}+k\right)\right)_{i} & =\sum_{j=1}^{m} \delta_{i} \delta_{j} q_{i j}\left(t_{u}\right) \delta_{j} u_{j}\left(t_{u}+k\right) \\
& \geqslant \delta_{i} \delta_{j 0} q_{i j 0}\left(t_{u}\right) \delta_{j 0} u_{j 0}\left(t_{u}+k\right) \\
& >0
\end{aligned}
$$

for $1 \leqslant i \leqslant m$. Hence $Q\left(t_{u}\right) u\left(t_{u}+k\right) \in \mathscr{K}_{1}^{0}$ and the result follows from Theorem 5.

Theorem 6. In addition to (H), assume $P(t)$ and $Q(t)$ satisfy the assumptions concerning $Q(t)$ in Theorem 5 . If $P(t) \leqslant Q(t)$ with respect to \mathscr{K}, $t \in[a, b]$, then the smallest positive eigenvalues λ_{0} and Λ_{0} of (1), (3) and (2), (3), respectively, satisfy $\Lambda_{0} \leqslant \lambda_{0}$. Furthermore, if $\Lambda_{0}=\lambda_{0}$ then

$$
P(t) z_{0}(t+k)=Q(t) z_{0}(t+k), \quad t \in[a, b]
$$

where $z_{0}(t)$ is as in Theorem 5.
Proof. By Theorem 5, $\lambda_{0}>0$ and $\Lambda_{0}>0$ exist. We now show that $M \leqslant N$ with respect to \mathscr{P}. Let $u \in \mathscr{P}$ and note that

$$
\begin{aligned}
M u(t) & =\sum_{s=a}^{b} G(t, s) P(s) u(s+k) \\
& \leqslant \sum_{s=a}^{b} G(t, s) Q(s) u(s+k) \\
& =N u(t), \quad t \in[a, b+n] .
\end{aligned}
$$

Further $\quad \Delta^{i} M u(a)=\Delta^{i} N u(a)=0, \quad 0 \leqslant i \leqslant k-1, \quad$ and $\quad \Delta^{i} M u(b+k+1)=$ $\Delta^{i} N u(b+k+1)=0,0 \leqslant i \leqslant n-k-1$. Theorem 4 shows that $\Lambda_{0} \leqslant \lambda_{0}$.

Now suppose $A_{0}=\lambda_{0}$. By Theorem 4, the eigenfunctions $u(t), v(t)$ of (1), (3) and (2), (3), respectively, are scalar multiples of each other, say $v(t)=c u(t)$. It follows that

$$
(-1)^{n-k} L v(t)=\lambda_{0} P(t) v(t+k)=\lambda_{0} Q(t) v(t+k), \quad t \in[a, b]
$$

Hence

$$
P(t) z_{0}(t+k)=Q(t) z_{0}(t+k), \quad t \in[a, b]
$$

where $z_{0}(t)=v(t)$.
TheOrem 7. Assume $\delta_{i} \delta_{j} p_{i j}(t) \geqslant 0$ on $[a, b]$ for $1 \leqslant i, j \leqslant m$, and that there is a $t_{0} \in[a, b]$ and an $i_{0} \in\{1, \ldots, m\}$ such that $p_{i_{0} i_{0}}\left(t_{0}\right)>0$. Then the eigenvalue problem (1), (3) has a least positive eigenvalue λ_{0} which is a lower bound on the modulus of the eigenvalues of (1), (3) and satisfies

$$
\lambda_{0}^{-1} \geqslant G\left(t_{0}+k, t_{0}\right) p_{i_{0} i_{0}}\left(t_{0}\right) .
$$

Furthermore, there is an eigenfunction $y_{0}(t)$ corresponding to λ_{0} satisfying $\delta_{i}\left(y_{0}(t)\right)_{i} \geqslant 0, t \in[a, b+n]$, for $1 \leqslant i \leqslant m$.

Proof. First we show that $M: \mathscr{P}_{1} \rightarrow \mathscr{P}_{1}$, where

$$
M u(t)=\sum_{s=a}^{b} G(t, s) P(s) u(s+k)
$$

Let $u \in \mathscr{P}_{1}$ and consider

$$
\begin{aligned}
\delta_{i}(M u)_{i}(t) & =\sum_{s=a}^{b} G(t, s) \sum_{j=1}^{m} \delta_{i} \delta_{j} p_{i j}(s) \delta_{j} u_{j}(s+k) \\
& \geqslant 0, \quad 1 \leqslant i \leqslant m, t \in[a, b+n]
\end{aligned}
$$

Further, $M u(t)$ satisfies the boundary conditions (3). Hence, $M: \mathscr{P}_{1} \rightarrow \mathscr{P}_{1}$.
Define $w \in \mathscr{P}_{1}$ by setting $w_{i}(t)=0$ on $[a, b+n]$ for $i \neq i_{0}$, and set

$$
w_{i_{0}}(t)= \begin{cases}0, & t \neq t_{0}+k \\ \delta_{i_{0}}, & t=t_{0}+k\end{cases}
$$

where i_{0} and t_{0} are as in the statement of the theorem. Note that

$$
\varepsilon_{0} \equiv G\left(t_{0}+k, t_{0}\right) p_{i_{0} i_{0}}\left(t_{0}\right)>0
$$

Then for $i \neq i_{0}$ we have

$$
\delta_{i}(M w)_{i}(t) \geqslant 0=\varepsilon_{0} \delta_{i} w_{i}(t), \quad t \in[a, b+n] .
$$

Further, for $t \neq t_{0}+k$,

$$
\delta_{i_{0}}(M w)_{i 0}(t) \geqslant 0=\varepsilon_{0} \delta_{i_{0}} w_{i_{0}}(t) .
$$

We also have that

$$
\begin{aligned}
\delta_{i_{0}}(M w)_{i_{0}}\left(t_{0}+k\right) & =\sum_{s=a}^{b} G\left(t_{0}+k, s\right) \sum_{j=1}^{m} \delta_{i_{0}} \delta_{j} p_{i_{0} j}(s) \delta_{j} w_{j}(s+k) \\
& =G\left(t_{0}+k, t_{0}\right) p_{i_{0} i_{0}}\left(t_{0}\right) \delta_{i_{0}} w_{i_{0}}\left(t_{0}+k\right) \\
& =\varepsilon_{0} \delta_{i_{0}} w_{i_{0}}\left(t_{0}+k\right)
\end{aligned}
$$

It follows that $M w \geqslant \varepsilon_{0} w$ with respect to \mathscr{P}_{1}. The conclusions of this theorem now follow easily from Theorem 2.

By finding the appropriate Green's function, it is easy to get the following result.

Corollary 2. If $P(t)$ satisfies the hypothesis of Theorem 7, then the eigenvalue problem

$$
\begin{aligned}
-\Delta^{2} y(t) & =\lambda P(t) y(t+1) \\
y(a) & =0 \\
y(b+2) & =0
\end{aligned}
$$

has a smallest positive eigenvalue λ_{0} which satisfies

$$
\lambda_{0}^{-1} \geqslant \frac{\left(t_{0}+1-a\right)\left(b+1-t_{0}\right)}{b+2-a} p_{i_{0} i_{0}}\left(t_{0}\right)
$$

In Theorem 7, we obtained an upper bound for λ_{0}. Using a proof similar to a proof of Ahmad and Lazer [1, Lemma 1] in the differential equations case, we can also get a lower bound for λ_{0}.

Corollary 3. Assume $P(t)$ satisfies the hypothesis of Theorem 7. Then the least positive eigenvalue λ_{0} of (1), (3) satisfies

$$
G\left(t_{0}+k, t_{0}\right) p_{i_{0} i_{0}}\left(t_{0}\right) \leqslant \lambda_{0}^{-1} \leqslant B \sum_{s=a}^{b}\|P(s)\|,
$$

where

$$
B=\max \{G(t, s) \mid t \in[a+k, b+k], \quad s \in[a, b]\} \quad \text { and } \quad\|P(s)\|=
$$ $\max _{1 \leqslant i \leqslant m} \sum_{j=1}^{m} \delta_{i} \delta_{j} p_{i j}(s)$.

Proof. Let λ_{0} be the smallest positive eigenvalue and let $z_{0}(t)$ be a corresponding eigenvector in \mathscr{P}_{1}. Pick $t_{0} \in[a, b]$ and $j_{0} \in\{1, \ldots, m\}$ such that

$$
A \equiv \delta_{j_{0}}\left(z_{0}\left(t_{0}+k\right)\right)_{j_{0}}=\max \left\{\delta_{j}\left(z_{0}(t+k)\right)_{j} \mid 1 \leqslant j \leqslant m, t \in[a, b]\right\}
$$

Then $M z_{0}(t)=\left(1 / \lambda_{0}\right) z_{0}(t)$, or equivalently,

$$
\frac{1}{\lambda_{0}} \delta_{j_{0}}\left(z_{0}\left(t_{0}+k\right)\right)_{j_{0}}=\sum_{s=a}^{b} G\left(t_{0}+k, s\right) \sum_{j=1}^{m} \delta_{j_{0}} \delta_{j} p_{j_{0} j}(s) \delta_{j}\left(z_{0}(s+k)\right)_{j}
$$

This implies that

$$
\frac{1}{\lambda_{0}} A \leqslant B A \sum_{s=a}^{b} \sum_{j=1}^{m} \delta_{j_{0}} \delta_{j} p_{j_{0} j}(s) .
$$

It follows that

$$
\lambda_{0}^{-1} \leqslant B \sum_{s=a}^{b}\|P(s)\| .
$$

Theorem 8. In addition to (H), assume

1. there is an $i_{0} \in\{1, \ldots, m\}$ and a $t_{0} \in[a, b]$ such that $p_{i_{0} i_{0}}\left(t_{0}\right)>0$, and
2. $0 \leqslant p_{i j}(t) \delta_{i} \delta_{j} \leqslant q_{i j}(t) \delta_{i} \delta_{j}$ and $q_{i j}(t) \neq 0$ on $[a, b]$ for $1 \leqslant i, j \leqslant m$.

Then the eigenvalue problems (1), (3) and (2), (3) have smallest positive eigenvalues λ_{0} and Λ_{0}, respectively. Furthermore, $\Lambda_{0} \leqslant \lambda_{0}$ and $\Lambda_{0}=\lambda_{0}$ iff $P(t)=Q(t)$ on $[a, b]$.

Proof. By Corollary 1 and Theorem 7, it follows that Λ_{0} and λ_{0} exist. The proof of Theorem 6 still applies in the present context, since only one of the operators M, N is required to be u_{0}-positive in that proof. Hence, $\Lambda_{0} \leqslant \lambda_{0}$.

Assume now that $\Lambda_{0}=\lambda_{0}$. By Corollary 1, there is an eigenfunction $z_{0}(t) \in \mathscr{P}_{1}^{0}$, and the arguments in Theorem 6 show that

$$
P(t) z_{0}(t+k)=Q(t) z_{0}(t+k), \quad t \in[a, b]
$$

It follows that for $t \in[a, b]$,

$$
\sum_{j=1}^{m} \delta_{i} \delta_{j}\left[q_{i j}(t)-p_{i j}(t)\right] \delta_{j}\left(z_{0}(t+k)\right)_{j}=0
$$

Since every term in this sum is nonnegative and $\delta_{j}\left(z_{0}(t)\right)_{j}>0$ for $t \in[a+k, b+k], 1 \leqslant j \leqslant m$, we see that

$$
p_{i j}(t)=q_{i j}(t), \quad t \in[a, b], 1 \leqslant i, j \leqslant m .
$$

References

1. S. Ahmad and A. Lazer, An N-dimensional extension of the Sturm separation and comparison theory to a class of nonselfadjoint systems, SIAM J. Math. Anal. 8 (1978), 1137-1150.
2. T. Fort, "Finite Differences and Difference Equations in the Real Domain," Oxford Univ. Press, Oxford, 1948.
3. R. D. Gentry and C. C. Travis, Comparison of eigenvalues associated with linear differential equations of arbitrary order, Trans. Amer. Math. Soc. 223 (1976), 167-179.
4. D. Hankerson and A. Peterson, Comparison of eigenvalues of focal point problems for nth order difference equations, Differential and Integral Equations, in press.
5. D. Hankerson and A. Peterson, Comparison theorems for eigenvalue problems for nth order differential equations, Proc. Amer. Math. Soc., in press.
6. P. Hartman, Difference equations: Disconjugacy, principal solutions, Green's functions, complete monotonicity, Trans. Amer. Math. Soc. 246 (1978), 1-30.
7. M. S. Keener and C. C. Travis, Positive cones and focal points for a class of \boldsymbol{n} th order differential equations, Trans. Amer. Math. Soc. 237 (1978), 331-351.
8. M. S. Keener and C. C. Travis, Sturmian theory for a class of nonselfadjoint differential systems, Ann. Mat. Pura Appl. (4) 123 (1980), 247-266.
9. M. A. Krasnosel'skil̆, "Positive Solutions of Operator Equations," Fizmatgiz, Moscow, 1962; English Translation Noordhoff, Groningen, The Netherlands, 1964.
10. K. Kreith, A class of hyperbolic focal point problems, Hiroshima Math. J. 14 (1984), 203-210.
11. A. Peterson, A comparison theorem for linear difference equations, in "Proceedings of the International Symposium on Nonlinear Analysis and Applications to Biomathematics, 1987," Andhra University, Visakhapatnam, India, in press.
12. A. Peterson, Green's functions for $(k, n-k)$-boundary value problems for linear difference equations, J. Math. Anal. Appl. 124 (1987), 127-138.
13. A. Peterson, On ($k, n-k$)-disconjugacy for linear difference equations, in "Qualitative Properties of Differential Equations, Proceedings of the 1984 Edmonton Conference" (W. Allegretto and G. J. Butler, Eds.), pp. 329-337, 1986.
14. K. Schmitt and H. L. Smith, Positive solutions and conjugate points for systems of differential equations, Nonlinear Anal. 2 (1978), 93-105.
15. H. L. Smith, A note on disconjugacy for second order systems, Pacific J. Math. 89 (1980), 447-452.
16. E. Tomastik, Comparison theorems for second order nonselfadjoint differential systems, SIAM J. Math. Anal. 14 (1983), 60-65.
17. C. C. Travis, Comparison of eigenvalues for linear differential equations of order 2 n , Trans. Amer. Math. Soc. 177 (1973), 363-374.
